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DOUBLE BETA DECAY:
A THEORETICAL OVERVIEW

S. P. ROSEN
T-DIVISION, LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS, NEW MEXICO 87545

1 INTRODUCTION

Now that Elliott, Hahn, and Moe! have observed the two-neutrino mode of double
beta decay in the !aboratory and the LBL-Santa Barbara collaboration? has set a
limit of almost 10%* years on the no-neutrino mode in ®Ge, I want to consider what
the next steps in this field should be. How do we build on the truly significant
advances that have been made in the past five years?

Although the principal motivation for studying double beta decay® comes from
particle physics, the setting occurs in even-even nuclei and so the practical prob-
lems, especially the theoretical ones, are problems of nuclear physics. Progress in
solving them will obviously lead to progress in the field itself. This is the aspect
of double beta decay that I wish to emphasize in my talk today.

The three double beta decay modes of experimental interest are two-neutrino
decay, no-neutrino decay, and Majoron decay. Two-neutrino decay, in which the
nucleus (A, Z) transforms into the nucleus (A4, Z + 2) and emits two electrons and
two electron-type anti-neutrinos,

(A, 2) = (A, Z +2) + 2 +20, (1)

is expected to occur in the standard model as a second-order effect in the Fermi
coupling conatant Gp. It is mainly a test of ruclear physics, that is our ability to
calculate the nuclear transition matrix element and the half-life for the process,
but the standard model does make predictions about such properties as angular
distributions which ought to be checked.

No-neutrino decay, in which the n-icleus (A, Z) again transforms into the nu-
cleus (A, Z + 2), this time with the emission of two electrons but no neutrinos,

(A, 2) — (A Z +2) + 2¢ (2)

is the mode of the greatest and most fundamental interest. Observation of it would
imply that: (1) lepton number is not conserved; and (2) at least one neutrino must
be a Majorana particle with non-vanishing mass. If one neutrino is a Majorana
particle then it is likely that all neutrinos are of this character. No-neutrino decay
is not expocted to occur in the standard model and so observing it would take us
into the realm of ‘Physics Beyond the Standard Model’.



The M \joron decay mode arises in a specific model for lepton nonconservation*
in which lepton number is regarded as a global symmetry instead of a gauge one.
Spontaneous breaking of this global symmetry gives rise to a Goldstone boson,
called the Majoron, and to a Majorana mass term for the neutrino. Lepton number
nonconserving double beta decay can now occur with the emission of two electrons
and a Majoron:

(A,Z2) = (A, 2 +2) +2 +x . (3)

As a result of the beautirul experiment of Ellictt, Hahn, and Moe!, the two-
neutrino decay of 83Se has now been seen in the latoratory with a half-life of order
10%° years. This confirms the earlier results of geochemical experimentz® in which
one observes the daughter nucleus rather than the decay electrons. The agreement
between both methods in this case lends credence to geochemical measurements
yielding a half-live of order 10?* years for the decay of 3Te.

No-neutrino decay has not been seen and the best limit on its lifetime comes
from experiments searching for the decay of "%Ge:

7,("®Ge; 0v) > (5 - 10) x 10*%years . 4
3

As far as the Majoron mode is concerned, one experiment claimed to see it, but
several subsequent ones failed to do so and set limits on its strength below that of
the original experiment.

Given this state of affairs, it seems to me that three major questions need to
be addressed in the field of double beta decay:

(1) Now that a lifetime of order 10*° yeais has been observed in the laboratory,
what should be the next step?

(2) How much further can the limit on the no-neutrino half-life be pushed?

(3) Does the Majoron really exist?

In order to develop answers to them, I shall describe briefly the nuclear and
particle physics contexts of the phenomena, the kincinatical features of the different
modes, and the problems associated with calculations of nuciear matrix elements.

2 NUCLEAR PHYSICS SETTING

Because of the pairing force, even-even nuclei tend to lie lower in energy than
neighboring odd-odd nuclei. It can therefore happen for a given triad of nuclei
(AZ), (A2 1 1), and (A,Z 1 2) where the atomic weight A and the atomic number 7
are both even numbera that the central mmember (A,7 t 1) is heavier than the other



two and that the first one (A,Z) is heavier than the third one (A,Z+2). Transitions
from the first to the central member are forbidden by energy conservation, but
transitions from the first to the third member are allowed. Thus they can occur as
second-order effects of the same interaction whick in first order gives rise to single
beta decay.

The ground-states of even-even nuclei have zero spin and positive parity, and
they characteristically have an excited state of spin 2 and positive parity about
500 keV above them. Ground-state to ground-state transitions are therefore of
the type:

0t - 0" (5)
and transitions to the excited state involve a spin change of two units:
ot — 2% . (6)

Typically some 2 to 3 MeV of energy are released in these processes. Examples of
double beta decay parent and daughter nuclei are given in Table 1 below.

TABLL 1 Examples of Double Beta Decay Nuclei®.

Parent | Daughter | Energy | Comment
Nucleus | Nucleus | Release
| Q (MeV)

“¥Ca 87y 4.27 Largest energy relezse

%Ge Se 2.04 Series of Ov expts

815, 81Ky 3.00 Genchem. and Lab.
190Mo 100 Ry 3.03 New expts

130T, 130 e 2.53 Geochemical

1281, 138 ¢ 0.87 Geochemical

136 xe 136 Bq 2.48 New expts, TPC
180N Y 1808 m 3.37

™TH 8y 0.86

387 13 py 1.15 New expt

3 PARTICLE PHYSICS REQUIREMENTS

The two-neutrino decay mode is expected to occur in the standard model as a
second-order effect of the beta decay Hamiltonian and it imposes no special re-
quirements on the properties of the neutrino; it will occur irrespective of whether
the neutrino is a Majorana or a Dirac particle and irrespective of whether it has

mass or not. No-neutrino decay, on the other hand requires physics beyond the
standard model.



If ro-neutrino decay is to occur, then lepton number cannot be conserved:
in fact it must change by two units because the final state contains two leptons
where the initial state contains none. Either there must exist some entirely new
interaction of unknown strength which causes this breakdown, or one of the neu-
trinos coupling to the electron in the standard weak current must be a Majorana
particle. In the laitter, and most often examined, case no-neutrino decay comes
about through the exchange of a Majorana neutrino between two neutrons inside
the nucleus. Given the (V-A) nature of the standard weak current, the neutrino
must be able to flip its helicity in its passage, real or virtual, from one neutron
to the other; this requires either :nat the neutrino have mass, or that there exist
some small admixture of (V+A) currents in the beta decay interaction, or both.
From a gauge-theoretic point of view, both of these helicity flip mechanisms re-
quire spontaneous breaking of the gauge symmetry by means of a neutrino mass
matrix.

This condition on the breaking of gauge theories arises from the requirement
of good high energy behavior for the amplitude for two electrons to transform into
two negatively charged gauge bosons via the mechanism of neutrino exchange®:

e e” — (W,)"(W,)” via neutrino exchange . (7

It should be recalled that good high energy behavior is at the heart of renormal-
isability, and that it is brought about by cancellations between different types
of diagram and by various algebraic conditions; in all cases it leads to relations
between coupling constants of the same kind as may be imposed by symmetry
groups, for example SU(2) and SU(3). The process in eq.(7) is a factor of all dou-
ble beta decay transitions, the transitions being completed when the gauge bosons
are hooked on to up- and down-quarks.

When the currents coupling to W, and W, both have the same helicity, then
the amplitude for eq.(7) is proportional to the mass term in the neutrino propa-
gator and it automatically vanishes when the neutrino mass vanishes. When the
two currents have opposite helicities, the resulting amplitude for eq.(7) is, in gen-
eral, quadratically divergent, and it wi!l lead to bad high energy behavior unless
the leading divergence is exactly cancelled by another diagram or by some other
condition. The only other diagram which could bring about a cancellation is one
in which the electrons couple directly to a doubly charged boson; the existence of
such a boson is not required in present-day phenomenology 2nd it would have the
unattractive feature of leading to quarks with charges +§ or ~§ in the spectrum
of elementary fermions. We therefore prefer the alternative of another condition.

Such a condition is tantamount to saying that the neutrino which couples to
the electron e in the current of W, must be orthogonal to the charge conjugate of
the neutrino coupling to ¢ in the current of W,. This orthogonality is in keeping
with the algebraic structure of gauge theories, and it yields an algebraic condition
which ensures the vanishing of the amplitude for eq.(7) when all neutrinos which



contribute to it either have zero mass, or have exactly the same nonzero mass®.
Thus it is mass differences, arising as they do from spontaneous breaking of gauge
symmetries, that yield nonzero amplitudes for eq.(7) and hence for no-neutrino
double beta decay.

At first sight, it might seem that this requirement of nonzero and distinct
masses for neutrinos might be evaded were we to opt for an entirely new AL =
2 interaction as the mechanism for no-neutrino double beta decay in place of
neutrino exchange. However such a mechanism, while not postulating a neutrino
mass ab initio, still leads to an induced mass through second-, and higher-order
diagrams which transform a neutrino v into its charge conjugate (v.)¢ and are
the equivalent of a Majorana mass term. On dimensicnal grounds, this mass is
expected to be small, being of order:

5lij0rlnl ~ gﬂﬁ(G."')zEs y (8)

where ggp i8 the strength of the new interaction in dimensionless units and is of
order 1073 or less, G is the Fermi ccastant for beta decay, and E is a virtual energy
characteristic of second-order weak processes in nuclei. Taking £ =~ 100MeV,
which corresponds to a mean separation between nucleons of 1-2 fermi and is
probably optimistic, we find that

EMMajorana = gap107 %V x 107 %V . (9)

This value is much smaller than the K|, -~ K3 mass difference, alsc a second-order
weak effect and approximately equal to 1078 eV, because of the very weak sirength
of the AL = 2 interaction.

4 KINEMATICAL FEATURES OF THE DE-
CAY MODES

The three types of double beta decay have different kinematical features, and these
differences may be used to distinguish between them at the observational level. In

this section we discuss the properties of phase space, energy specira, and angular

distributions?.

Because leptons are so much lighter than nucleons, and because the energy
released in double beta decay ia very small compared with the rest-mass of the
parent nucleus, we treat the nucleus as being infinitely Licavy and ignore, in most
cases, the recoil of the daughter. Two-neutrino decay then has a four-body phase
space correaponding to the two electrons and two anti-neutrinos in the final state.
In terma of the energy release Q, the four-body phase space behaves roughly like
the tenth to eleventh power of Q, and so the the half-life for two-neutrino decay



is inveisely proportional tc to this factor:

1
T% (2U)

x QIO (10)

No-neutrino decay has a two-body phase space corresponding to the two elec-
trons that populate the final state, but it has an additional factor arising from the
integral over the virtual neutrino exchanged between nucleons inside the nucleus.
Crudely speaking each of these factors is proportional to the fifth power of an
energy, Q for the phase space and the mean neutrino energy (E,) for the integral:

?—(lfﬁ  (E,)5QF. (11)

1
2

The ratio of two-neutrino to no-neutrino lifetimes is then roughly preportional to:

Rz%“(%’))s, (12)

ha |

For a mean virtual neutrino energy of 50 MeV and an energy release of 3 MeV,
the ratio of lifetimes is of order 10%. This means that, were all other factors,
for example coupling constants, equal, the no-neutrino mode would be about a
million times faster than the no-neutrino mode. It follows that no-neutriro decay
is sensitive to very small lepton-nonconserving parameters. In fact this argument
is the origin of our choice gss =~ 1073 in the previous section.

Majoron decay involves a three-body final state and so the phase space for it
lies somewhere between those for the no-neutrino and two-neutrino modes. Thus
it varies as the eighth power of Q, or thereabouts.

A useful tool for distinguishing between these modes is the spectrum of events
plotted as a function of the snm of the energies of the electrons. For two-neutrino
decay the spectrum will be a continuous, broad distribution with its peak just
below the mid value Q/2 of the energy sum; this corresponds to an approximately
equal sharing of the energy release between the electrons and anti-neutrinos once
the rest-mass of the electrons has been taken into account. For no-neutrino decay
the electrons carry off the entire energy release and so the sum of their energics
must be constant; the resulting spectrum is a spike at the end-point Q. For Majoron
decay, angular momentum conservation requires the two electrons to travel in
opposite directions (see below), and so the Majoron will tend to have a ‘soft’
momentum; the peak of the sum spectrum for this mode will therefore be shifted
beyond the mid-point Q/2 and will fall closer to the end-point. It is the shape of
this last spectrum that provides th« basis for deciding whether the Majoron exists.

We now turn to che question of the angular correlation between electro-s for the
different decay modes. The essential point in this discussion is that ground-state to
ground-satate transitions are all of the type Ot - » 0t and so the leptons in the final
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state must have zero total angular momentura. Similarly in the approximation of
an infinitely heavy nucleus, the leptons must have zero total linear momentum.

In the standard electroweak model electrons have negative helicity and anti-
neutrinos positive helicity. If we consider a colinear decay configuration in which
all the leptons travel along, or anti-parallel to, a given direction, then the conser-
vation of angular momentum in that direction amounts to the conservation of spin
components in the given direction.

Now take the case of two-neutrino decay: we must arrange the colinear config-
uraticn in such a way that linear momentum and spin are both conserved in the
final state. The only way to do this is to have the two electrons be emitted with
roughly equal and opposite momenta, and likewise for the two anti- neutrinos.
Therefore the angular correlation must be of the form:

Az (e1,€2) o (1 — 51 Bz cosbys) (13)

where 8,3 is the angle between the electrons and f;(i=1,2) are the speeds of the
electrons in units of the speed of light.

For no-neutrino decay, we rnust distinguish between the two phenomenologi-
caily allowed mechanisms, namely the direct neutrino mass mechanism and the
interference of left- and right-handed leptonic currents. In the former case the
electrons both have the same helicity and so the back-to-back configuration con-
serves linear and angular momentum at the same time. In the latter case, the
electrons will have opposite helicities, and one has to appeal to the nuclear recoil
to conserve both types of momenta: angular momentum requires the electrons to
be parallel and linear momentum requires the nucleus to recoil in the opposite
direction. The corresponding angular distributions are:

Aovmass(€1,€2) & (1 — §18;cosby) , (14)

and

AovLr(e1,€2) x (1 + f1f3co88y,) ' (15)

respectively. An important experimental question to ask regarding the LR angular
distribution of eq.(15) is:

DO TPC AND SANDWICH DETECTORS HAVE AN INHERENT BIAS
AGAINST THIS TYPE OF CORRELATION ?

The Majoron has zero spin and in this decay mode the electrons again have the
same helicity. Thus the electrons must again be in a back-to-back configuration
as in eq.(14) above.

It is also interesting to consider the ground-state to spin 2% excited state tran-
sition and the angular distribution for it in the various possible cases. In the case



of two-neutrino decay, we can conserve linear momentum and angular momentum
in a transition in which the ground-state of the parent decays to the J, = 2 com-
ponent of tl.e excited state by means of a colinear configuration in which the two
electrons go off in the z-direction and the two anti-neutrinos go off in the opposite
direction. Given the standard helicity assigninents, the totai J, of the leptons
will be (-2) and just balance the spin component of the daughter nucleus. Not
all transitions involve the same values of the z-components of angular momentuin,
and so the angular correlation will be, on average:

1
Az (e1,€2;0 = 2) & (1 + §ﬁ1ﬂg cos?f;z) . (16)

In the case of no-neutrino decay, we must  1in consider the two mechanisms
separately. The mass mechanism gives rise to two elecirons which are in a relative
S-state and so the only leptonic angular momentum is the spin angular momentum.
This is ot sufficient to balance the nuciear spin change of two units, and therefore
the mass mechanism cannot engender transitions to the excited state. The lcft-
right interference mechanism, on the other hand, gives rise to two electrons in a
relative P-state, and when coupled with the spins of the electrons, this can balance
the nuclear spin change. It follows that the detectior of a no-neutrino transition to
the spin 2 excited state of the daughter nucleus would be an unambiguous sigral
for decay through the interference of 'eft- and right-handed leptonic currents’.

5 NUCLEAR MATRIX ELEMENTS

Having disposed of the kinematics of double beta decay, we must now deal with the
heart of the problem, namely the nuclear matrix element. It is always calculated
in second-order perturbation theory and takes the general form3:

v =5 UL Ha | m)m | H | ) o

where i, m, f, denote the initial, intermediate, and final nuclear states respec-
tively, and Hj represents the standard operators for single beta decay. The energy
denominator is given by:

(Em — E\) = Wpi + E,, + E,, (18)

where W,,, denotes the energy difference between the ground-state of the parent
nucleus and the state m of the intermediate nucleus, E,, is the energy of the
neutrino in the intermediate state, and E, is that of the electron.

What we would like to argue in this section is that the matrix elements for
ground-state to ground-state 2v transiticns are likely to be small, and likewise for
Ov transitions. Many years ago, Henry Primakoff and I argued that in general the



single beta decay matrix elements appearing in eq.(17) above are of the ‘allowed
but hindered’ variety, and that the number of intermediate states is limited®. We
then estimated a central value for the double beta decay miatrix element of 0.1, but
because of the crudeness of our argument, we gave ourselves leeway of an order
of magnitude in both the increasing and the decreasing directions. Today, it is
possible to make more sophisticated arguments but they have the same tendency
as our original one.

I* is common practice to replace the energy difference between nuclear states,
Wi, by an average value so that the sum over the intermediate nuclear levels
can be performed by closure. In the case of no-neutrino decay this seems to be
a reasonable approximation because the typical energy of the exchanged neutrino
is of order 50-100 MeV (the inverse of a typical separation between neutrons),
whereas the typical value of W,,, is of order 5-10 MeV. In the case of two-neutrino
decay the use cof closure is open to question and several calculations have been
made without it. For our purposes, however, we make use of it and replace the
entire energy denominator by an average:

(m~mp4mm+§+ma (19)

In the usual allowed approximation for beta decay, the operators Hy take the
standard forms for Fermi and Gamow-Teller transitions:

Hy = [ Y rf]=T* Fermi
nucleons

Hs = [ ) r1foy] Gamow — Teller . (20)
nucleons

The Fermi operator is the raising operator for total nuclear isospin, while the
Gamow-Teller operator is a mixed spin-isospin operator of the type that occurs in
the supermultiplet scl.eme of Wigner. In order to anaiyse the properties of these
operators, let us briefly review the role of isospin in nuclei.

[ shall use the particle physics convention and define the third component of
isospin to be:

n:%w~N) (21)

where Z is the number of protons and N is the number of neutrons. For heavy
nuclei of the kind that undergo double beta decay the number of neutrons ex-
ceeds that of protons, and the ground-state is assigned the smallest total isospin
comj.atible with the third component, namely

T:;N—Z)(NZZ) (22)

We can now construct the following table of isospins for the triad of nuclei taking
part in double beta decay.



Table 2. Ground State Iscspin Assignments.

Nucleus Ground-State |
Isospin

Initial (A,Z) %(N - 7)

Intermediate (A,Z+1) | 3(N - Z) -

Final (A,Z + 2) %(N -2) -

It follows that ground-state to ground-state transitions involve a change of two
units of isospin:

Ti-Tr=2 (23)

This is an important observation which will have specific ramifications for
double beta decay. For future reference we note that the intermediate and final
nuclei (A,2+1) and (A,Z+2) do have states with isospin }(N — Z); they are both
excited states and have the same isospin, spin, and parity as the ground-state
of (A,2). They are known as the single and the double isobaric analogue states
respectively.

Turning to the double Fermi matrix element for two-neutrino decay,

Mp(20) = e S | T [ mim | T* [4) (24)
(Em - E') m

we find that it involves the total isospin raising operator acting twice, first upon
the initial state and then upon the intermediate state. Now the raising operator
hes the property that it increases the third component Ty eigenvalue by one unit
without changing the total isospin T. Therefore th states m and f must have
the same isospin as i for the matrix element to be nonzero. In other words the
Fermi operator would like to transform the ground-state of the initial nucleus into
the double isobaric analogue state of the daughter, rather than the ground-state.
Since the ground-state of the daughter nucleus has two units fewer total isospin
than that of the daughter, we conclude that, to the extent that isospin is a good
quantum number, the corresponding matrix element must vanish:

Mp(2v;838 — gs) =0 . (25)

What about the double Gamow-Teller matrix element
1
MGT(ZV)t:(E —E)}:f|zr al|m)m|21m|t)7 (26)

Should there be a good symmetry scheme in which the operators 3 70 belong
to the set of generators of the symmetry algebra, then Mgt will vanish when the

10




states i and f belong to different representations, just as happens in the case of
the Fermi matrix element.

One candidate for such a theory is the Wigner supermultiplet theory, which is
based upon the embedding of the direcit product of spin and isospix in the group
SU(4), and which is generated by the operators:

T.',O'J‘,(T[Uk) fOl‘ i,j,k,l = 1,2,3 . (27)

The J = 0,T ground-state of {(A,Z) will, in general, belong to a different ST!(4)
representation than the J = 0,T — 2 ground-state of (A,Z+2), and so Mgy will
vanish. Unfortunately SU(4) is not such & good symmetry, and this argument,
though illustrative, is not a very strong one.

To demons-rate this point, consider a commutation rule in the algebra, namely:

Ylrto,rta)) =3(2Ts) = -3(N - 2) . (28)
]
Take the expectation value with respect to the ground-state and insert a complete

set of states (that is, the set of all states in the same representation as the ground-
state) to yield the sum rule:

2 lm|rta|0) P =3 | (n|r o |0%) '=3(N-2) . (29)

The first term refers to - decays from the ground-state and the second to g8+
decays. It turns out ¢hat giant Gamow-Teller resonances plus low- lying J* =1*
states do not exhaust the sum rule, but fill only about 60% of it. This indicates
that the sum rule is not well satisfied, and that SU(4) is not a very good symmetry.
A phenomenological way of dealing with this problem is to renormalise the axial
vector coupling constant g4 down from its value of 1.26 in neutron decay to a value
of 1 for heavy nuclei.

As indicated by this discussion, we must turn to more complicated schemes
in order to evaluate the double Gamow-Teller matrix element. Since it gives the
dominant contribution to the two-neutrino decay rate even though it is likely to be
‘suppressed’, we shall return to the subject below. For future purposes we factorise
the rate for two-neuvtrino decay into a product of the square modulus of the matrix
element times a factor arising from phase space and Coulomb corrections:

1
r*(2u;0+ — 0%)

=| Mer |’ Ger(A, 2) . (30)

In the case of no-neutrino decay we use closu.e over the intermediate nuclear
states and integrate over virtual neutrino energies to obtain two matrix elements

11



analogous to the double Fermi and Gamow-Teller matrix elements for the two-
neutrino case®:

mrlon) = (112 L
Mor(ov) = (f][X (T")+(:':o"o'] i) - (31)
kJ

The factor ;:—‘ is the neutrino propagator in the small mass limit m, <« (p,), the

mean momentum of the exchanged neutrino, and it should be replaced by ¢~
in the large mass case m, > (p.).

At first sight, one might expect the neutrino propagator strongly to enhance
transitions in which the parent neutrons come very close together. Effects of the
nuclear potential, howrver, appear to mitigate this factor. In hard core potentials,
nucleons never come closer than § fermi (107'3cms), and in other potentials the
optimal attraction occurs at a little over 1 fermi. From a shell model point of view,
one must also allow for the fact that the more deeply bound nucleons in the inner
shells are much less likely to take part in double beta decay than are the ‘valencs’
nucleons in the oucer shells.

With limitations like these in mind, Primakoff and I® proposed that the neu-
trino propagator ;—:7 in eq.(31) be replaced by an average value, which we took to
be the nuclear radius

r

(ru) ~ R(A, Z) s 1.2Afermi . (32)

An immediate consequence is that the no-neutrino matrix elements are directly
proportional to the corresponding two-neutrino ones. It follows that the Fermi
matrix element should be small for both tpes of decay, that both decay rates
depend only on tle one double Gamow-Trller matrix, and that the ratio of the
ratcs for the two decay modes depends only on the kinematical properties of the
parent nucleus. This is one reason why measuremen.y of the two-neutrino decay
rate are so important for extracting bounds on lepton number violating parameters
from no-neutrino decay,

Siell model calculations by Haxton, Stephenson, and St-ottman® seem to sup-
port the proportionality between the two kinds of matrix element, but with a
smaller mean separation of about one half the nuclear radius. More recent cal-
culations bascd on quasi-particies and the random phase approximation!:**1? do
not support the proportionality and tend to emphasize the short-distance contri-
butions to the no-neutrino matrix element from nearby pairs of neutrons. Thus it
becomes a question whether proportionality holds and whether the Fermi matrix
element for no-neutrino decay is small.



One way to see how the proportionality might be lost is to 2xpand the propa-
gator in terms of spherical harmonics:

2= LS i (T>LY£‘ (Q)Y,M(@s) | (33)

Tkl ™S> ILm
where the subscripts < and > refer to the lesser and the greater of the position
vectors ry and r) respectively. From eq.(33) we see that because of the spherical
harmonics, the sum over intermediate states must include all spins. By contrast the
corresponding sum for the double Gamow-Teller matrix element of two-neutrino
decay is limited to JP = 1% states, as can be seen from eq.(26).

Thus it is not obvious that there is a simple relationship between the ma-
trix elements for the two modes of double beta decay. Nevertheless we can gain
important insights about nuclear wavefunctions irom the two-neutrino case.

6 THE SHELL MODEL AND TWO-NEUTRINO
DECAY

With this vhought in mind, let us look at two-neutrino decay from the viewpoint
of the shell model. In its simplest form the shell model consists of a series of
energy levels determined by a mean-field, Hartree-Fock potential. The quantum
numbers characterizing the levels consist of the principal quantum number n, the
orbital angular momentum | which is denoted by the usual spectroscopic notation
(1-0,1,2,3,4,5, are represented by s,p,d,f,g,h, respectively), and the tctal angular
momentum j. In the Nilsson model, which we adopt he:e, we shall concentrate on
the angular momentum quantum numbers.

The levels are filled succeasively in accordance with the Pauli Principle, and
neutrons and protons are treated separately. Each shell with total angular momen-
tum j can accommodate 2j+ 1 particles at most, and since j is aiways a half-integer,
the maximum occupation number is even. A subset cf levels which covers many
of the double beta decay parent nuclei is shown in Table 2. Since the nuclei with
which we shall be concerned contain more neutrons than protons, the last neutron
level to be filled in a given nucleus is generally different from that of the last proton
level; this is also illustrated in Table 3.



Table 3 Nilsson model energy levels!? for double beta parent nuclei (in
descendirg order), indicating the levels of the last neutrons and protons to be

filled.
Energy | Total Number Protons Neutrons
Level of Particles ZLN ucleus | N ] Nucleus
$1 82 82 | 136 X
ds 80 78 | 130T¢
hiy 76 76 | 18T
dy 64
g1 58 58 | 19Af0
gz 58 54 | 136x,
9 58 52 | 130T
g1 58 52 | 128T¢
g% 50 48 8256
g3 50 44 | 18Ge
gy 50 42 | %Mo
Py 40
f% 38 34 | 828,
Py 32 32 | 78Ge
7 28 28 | ®Ca
dy 20 20 [ *8Ca

‘The dominant contribution to beta decay transitions is usually thought to
involve the most loosely bound neutrons and protons, that is those particles located
in the last shell to be filled. For ground-state to ground-state transitions this means
that two neutrons in the last neutron shell to be fille! must transform into two
protons in the lowest open proton shell. It is not difiiult to see from Table 3 that
such transitions will generally involve a chang= ‘n the ~rbital angular mmomentum
of the nucleon undergoing it. Now the Gamow-Teller operator can change spin
and isospin, but not ortital angular momentum (see ¢q.(20)). Therefore we expect
such transitions to te forbidden or strongly suppressed.

Another property of the Gamow-Teller operator is that it yields greater proba-
bilities for transformations from one spin-orbit partner to another than for trans-
formations within the same shell. In other words, it prefers to transform the state
with 5 [} ; into the state with y - [ - ;, or vice veraa, than to conserve the
value of 3. This feature together with the orbital angular momentum argument
suggests that of all the transitions listed in Table 4 below, only the one involving
"Mo is not likely to be suppressed.
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Table 4 Simple-Minded View of Double Beta Decay Transitions.

Nuclear Shell-Model | Comment
Decay Transition
B8Caqa -8 Ty (f%)2 — (f;)2 suppressed, not spin-orbit partners
Ge —"% Se (g%)" — (f%)2 suppressed by orbitai ang. mem.
82Ge 82 Ky (g%)2 — (f%)z suppressed by orbital ang. mom.
*®Mo —'% Ru | (97)* — (95)* | not suppressed

128 p, _,128 Xe

moTc__,lso Xe ( — %

136X¢_,136 Ba (si)’ﬂ(g;
3

—
=
s
”»
|
+
—
<

;)’ suppressed

QU
o

~

[

suppressed
suppressed

It has to be clearly kept ir mind that these arguments are over-simplified, and
that other effects which blur them must be taken into account. Where levels are
clese, configuration mixing comes into play and neither the initial state nor the
final state can be described as simply as in Table 4 above. There are correlations
between nucleons, such as hard-core potentials, which keep them separated by
sotue minimum amount. Pairing forces, which are responsible for the energetic
conditions permitting double beta decay, make pairs of like nucleons couple to
zero angula. momentum. Particle-hole and particle-particle interactions have a
significant impact on other aspects of pairing, and quadrupole forces provide in-
teractions, and therefore mixing, between orbits whose angular rnomenta differ by
two units.

All of these factors can distort the simple-minded picture given above, but we
expect some qualitative features to survive. Thus we have a general tendency to
favor 'Mo as a double beta decay candidate over other nuclei that have been
investigated. We shall have more to say about this in the next section.

7 QUASI-PARTICLE RANDOM PHASE AP-
PROXIMATION

The quasi-particle random phase approximation (QRPA) is a sophisticated version
of the shell model designed to take account of pairing. It has recently been applied
to the calculation of double beta decay by three different groups and the results
are encouraging. The groups are: Engel, Vogel, and Zirnbauer (KVZ)'; Grotz,
Klapdor, and Muto (GKM)'!; and Civitarese, Faessler, and Tomoda (CFT)'?; and
the interesting aspect of the work, first observed by EVZ, is that when particle-
particle interactions are taken into account, two-neutrino double beta decay matrix
elements can be made vanishingly small. Unfortunately the actual magnitude of
the matrix elements is sensitive to the strength of the new interaction, and sn the



calculations are not yet definitive. Nevertheless they represent a real advance and
one may hope that definitive results are not too far away.

The idea of quasi-particles is based on the principle that the presence of a
particle with a set of quantum numbers (+q) is equivalent to the absence of a
particle with the opposite set of quantum numbers (-q). This principle allows us
to invent a new ‘particle’ which is a linear superposition of the presence of (+q)
and the absence of (-q), and to try to describe a nuclear system in terms of these
‘particles’.

To implement the idea, we introduce a set of fermion annihilation operators a,
and creation operators a‘,T which satisfy the usual anti- commutation rules:

{a‘,,al} = {a,T,a,T} =0 ('34)

and

{a,,T,a,} = 6*.‘ . (35)

The index k can be regarded as representing the set of quantum numbers of one or-
bit in a specific shell model. Now construct a set of quasi-particle opcrators which
incorporate the principle stated above and which obey the same anci-commutation
rules as the a, uperators. They are given by:

a.f = U,a.T—V,a_.
ay = Uyay - V,,a_,,T , (36)

where k is always positive,and U, and Vi are real numbers satisfying
U.z 1 sz =1 . (37)

The principal virtue of this approach is that the ground-state of the a operators
contains correlated pairs of the a particles:

(lkl()) - a-.lO) =0
) Va
10) < T (14, atast)llo) (38)
>0 -k ’
The chief diradvantage is that the scheme does not automatically conserve particle
number, and so one must add a subsidiary condition in order Lo do so.
In this model, il.e Hamiltonian is given by

H x:,uﬂln. t gpp )_:(Q.Tn .T)(mu )t g,,.)_;(uhfn ,,)(mfn )by (39)
Y A

L X

where ¢y are the energy levels of the shell model, the gy, term represents particle-
hole interactions, and g,, is the particle-particle term introduced by EVZ. This
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new term causes the two-neutrino matrix element Mgr(2v) of eq.(26) to vanish
when

9zp = Gph (40)
and to vary rapidly with g,,. From u symmetry point of view, the vanishing of tke
matrix element can be associated with a dynamical SU(4) which holds when the
two coupling constants are equal.

In their actual calculations, EVZ use a zero range fo:cc whereas the other
groups, GKM and CFT, use a more realistic particle-particle and particle-hole
force. T ,pical results are displayed in Table 5 below. They indicate that wichout
the particle-particle force the calculated half-lives are much too short; and that
with a realistic force it is possible to account for the experimental half-lives of both
81Se and '3°Te (see the KM,pp force line of Table 5). The estimated half-life for
19000 is not much longer than the present limit!4.

Table 5 Comparison of QRPA calculations of two-neutrino half- lives.

Calculation |7%Ge |[%Se |'*®Te | '¥Te 1000fo
10*'yr | 10%°yr | 10%yr | 10%yr 10'®%yr

EVZ 0.21 [0.11 [0.01 [0.0024 |[0.32

Ipp =9 =0| | _ N _4

EVZ 1.3 1.2 0.55 0.22 6

ﬂ]l = -390

KM 0.064 [0.027 {002 [0.007 |

9 =0 RSN SR (SN IR IS

KM 55 1.9 20 2.0

pp force

experiment |2 03 [1 2 [5% 1is za[>as

It has been emphasized by Haxton'® that standard shell model calculations
huve come within a factor of 2 of the measured lifetime of **Se, and that with
inproved capabilities for handling large sets of basis states, the inethod may yield
an accurate computation of all two-neutrino lifetimes.

The QRPA method has also heen applied to the calculation of no-neutrino
matrix elements'? '3 There appears to be some suppression in this case too, but
the matrix element is not as sensitive to the particle-partic!~ interaction strength
gpp 88 in the 2v one. As a result, the limits on the neutrino mass extracted from
bounds on the half-life for no- neutrino decay are not an tight as those obtained in
other calculations. Table 8 containa the QRPA bounds and it indicates that the
mass limits are about a factor of 3 larger than those olitained from shell model
calculations.



Table 6 Bounds on neutrino mass extracted from no-neutrino double beta decay
lifetime limits using QRPA.

Lepton Ncnconserving |  "°Ge 82Ge | 128T¢ 130T
Parameter
Experimental limit 5x 103 | 10?? | 5 x 10* | 1.5 x 10%!
on Ov half-life(yr)
(m,) eV
CFT <25 | <82| <19 < 21
EVZ (g,p = 0) <23
EVZ (o' = —390) <8

| EVZ (o' = —405) <10 < 2.2 <2 |
Left-Right Parameters
CTF (A) x 1¢® <36 |[<85| <55 <24
CTF (n) x 108 <28 <9 <18 < 21

A novel approach to the calculation of double beta decay matrix elements is
taken in the work of Ching, Chengrui and Ho, Tsohsiu'®, These authors repre-
sent the effect of the erergy denominator in second-order perturbation theory by
expanding the decay operators in a series of multiple ccmmutators. They use
the Paris potential to describe the inter-nucleon force and calculate matrix ele-
ments for both modes of decay in ®Ca. As a result they are able to reduce the
two-neutrino matrix element by a significant factor as compared with closure, and
they predict a half-life of 6 times the present limit of 4 x 10!” years. In Ov decay,
the Fermni matrix element is smaller than the Gamow-Teller or« by a factor of
2-7, and the Gamow-Teller matrix element is about the same as that calculated
by means of closure.

8 WHERE DO WE GG FROM HERE?

Having covered the major featuses of doub'e beta decay 2t this time, [ would like to
return to the questions I raised at the beginning. The observation of a lifetime of
10? years in the laboratory is a remarkable achiever .2nt, and a most encouraging
one. We can greatly admire it and, at the same tiine, regard it as the starting point
for a new program of experi-nentation on the two-neutrino mmode of double beta
decay. One ohvious step is to look for parent isotopes whose lifetimes are likely to
be shorter than that of *?Se, or comparable with it; and the aim of the program
should be to measure as many propertier of each decay as possible, In addition to
the half-life, these would include the energy apectra of single and double electrons,
and the angular correlation between the electrons. Measurements of the half-lives
of a range of different nuclei should provide us with important insights into the
nuclear physics of the phenomenon; and measurementa of the other properties will
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enable us to confirm those predicticns of the standard model that are less sensitive
to the nuclear physics.

Isotopes which are attractive from this point of view have phase space ai.d
Coulomb Factors comparable with, or better than those for 8Se. The energy
release n: 1st therefore be greater than 2.5 MeV and except for “8Ca the value of Z
must be greater than 34. A list of possible parent nuclei is given in Table 7 together
with their inverse phase space times Coulomb factors for both two-neutrino and
no-neutrino cecay. In all ceses the existing limits on the two-neutrino half-life are
less than 10%° years, although in the case of ¥Ca they come within a factor of 3
of this value.

For comparison we also show the factors for 8Se and '3°Te. It is amusing to
note that although the phase space factors for thes¢ two nuclei are al.v.ost equal
(the smaller energy release in '3Te being ofset by the larger Z), the half-lives
differ by a factor of 20 (see Table 5). This implies that the matrix element for
82G¢ is about 4 times larger than that for '3Te, 2 result which may be qualita-
tively explained by noting that while the former decay involves an orbital angular
momentum change of 1 unit for each nucleon, the latter involves a change of 2
units (see Table 4). It may be uscful to keep this point in mind when selecting
candidates from Table 7.

From a more realistic theoretical perspective, we need to continue pursuing
approaches likza QRPA!%:1.1? 3nd the use of larger and larger shell model bases!®
in the computation of two-neutrino half-lives. The level structure of *¥*Ca is well
understood, and so it is an in‘eiesting nucleus from the computational point of
view. %Mo is attractive because it could well have a large matrix element and
a half-life of order 10'° years. '3 Xe provides a good example of the scurce also
serving as the detector, as happens in the "®*Ge experiments; and °Nd is attractive
because of phase space, but its structure may be complicated and calculations on it
may be hard to carry out. A systematic comparison nl theory and experiment for
these lifetimes will be helpful in the computation of no-neutrino matrix elements
and the extraction of lepton number violating parameters.
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Table 7 Isotopes with inverse phase spac2 and Coulomb {actors (IPSC)
comparable with those of 82Se. The numerical values are taken from the review
article by Doi, Kotani, and Takasugi; figures in square brackets denote powers of

10.
Parent | Energy Release | 2o IPSC | Ov IP3C
Isotope (Me’) (years) | (years) |
BCa 427 2.5/16] | 4.1[24]
% Zr 3.35 5.216] | 4.5[24]
%Mo 3.03 1.1{17] | 5.7[24]
HéCd 2.80 1.3]17] | 5.3[24
136 X e 2.48 2.1(17) | 5.5[24]
10N d 3.37 8.4[15] | 1.3[24]
815e 3.00 2.3(17] | 9.3{24] |
139Te 2.53 2.117] | 5.9(24)

In choosing the above parent nuclei for two-neutrino decay, we have emphasized
large energy releases. As has recently been observed by Turkevich!?, this has the
effect of reducing the relative fraction of the no-neutrino mode in the overall decay
of a given isotope. Indeed one can see from the ~rgurents given in section 4 on
kinematics that the ratio of no-neutrino to two-neutrino decay varies inversely
as the fifth power of the energy release; and so one must decrease the energy
release if one wants to increase the ratio. The type of experiment for which this
consideration may te important is one in which the daughter nucleus is detected
and hence the sum of rates for the two decay modez is measured. Clearly it is
necessary to balance the nced for a relatively large fraction of no-neutrino decay
against the longest lifetime accessible to & particular technique.

Asfar as the search for no-neutrino deca; is concerned, ihe series of experiments
on "®Ge has been the most successful, and it is almost at the 10?* y~ars limit. Most
of these experiments have been performed with anywhere from 100 to 1000cc (5.6
kg) of natural germanium, which contains about 8% of the double beta decaying
parent. There is, however, one experiment in the Soviet Union which has used
about 200cc of a 90% enriched source, and which has achieved a competitive
sensitivity in a much shorter time than the other experiments. As a result, interest
in the use of enriched sources has grown ronsiderably, and it is hoped that, by
replacing natural sources with similar amounts of enriched ones, the limit on the
half-life can ultimately be pushed down to 10?® years and the limit on the mass to
the level of 0.1 eV.

One quesation to ask is whether v'e can do better with another nucleus. The
cnergy release in '%CJe is only 2 MeV, and as is apparent from Table 7, there are
several cases with larger energy releases and better phase space factors. ‘t'he prob-
lem will be, however, the wedding of these nuclei with an experimental technique
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as effective as that used in the germanium detectors. If, for example, the xenon
TPC is successful and its energy resolution can be brought up to the level of ger-
manium detectors, then one should explore the use of enriched xenon sources. If
other nuclei plus detecter combinations cannot be made as sensitive as germa-
nium, then the only way of exceeding the 10%® years limit will be to use much
larger quantities of germanium than have been used hitherto, and to observe them
for much longer times.

In all of these considerations, it should be kept in mind that if the actual
neutrino mass lies in the range suggested by the MSW effect!®, namely 1072 to
107*eV, then we must achieve sensitivities of order 10?2 years and longer if we are
to see the no-neutrino decay.

In conclusion let me say that there is still much to be learned from and about
double beta decay. Much more theoretical analysis will be needed before we un-
derstand the nuclear physics of the phencmenon, and many more experiments will
be necessary before we learn the properties of all of its modes.
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